Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

نویسندگان

  • Mohammad Qamar
  • Qasem Drmosh
  • Muhammad I Ahmed
  • Muhammad Qamaruddin
  • Zain H Yamani
چکیده

Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested. Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin Film

To enhance photocatalytic degradation of organic pollutants, coral-like TiO2 nanostructured thin films were chemically synthesized through the sol-gel method. The fabricated thin films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), nitrogen sorption isotherms, mercury porosimetry measurements, and UV-Vis Diffuse Reflectance Spectrum (DRS). The ...

متن کامل

Preparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon

In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...

متن کامل

Evaluation of Photocatalytic Activity of Fe Doped TiO2 Thin Film Prepared by sol-gel hot dip-coating

The application of Fe–TiO2 photocatalysis using sol–gel method by hot–dipping technique was investigated. Then, the influences of fabrication parameters, molar ratios of Fe to TiO2, the sol temperature, poly ethylene glycol (PEG) content and the number of dipping cycles on the photocatalytic activity in visible light region were mainly studied. The experimental results revealed the sample with ...

متن کامل

Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film

A novel Ag2O/TiO2-modified chitosan-based photocatalytic film with high adsorption and photocatalytic activity was synthesized under simulated solar irradiation, based upon the coupling of the synergistic catalytic technique of nano Ag2O/TiO2 and membrane separation. XRD, XPS, FESEM, and TEM characterization results illustrated that the Ag2O nanoparticles with a small size of 3–5 nm deposited o...

متن کامل

Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.

n-BiVO4 is a promising semiconductor material for photoelectrochemical water oxidation. Although most thin-film syntheses yield discontinuous BiVO4 layers, back reduction of photo-oxidized products on the conductive substrate has never been considered as a possible energy loss mechanism in the material. We report that a 15 s electrodeposition of amorphous TiO2 (a-TiO2) on W:BiVO4/F:SnO2 blocks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015